94 research outputs found

    Interactive Teaching Tools for Spatial Sampling

    Get PDF
    The statistical analysis of data which is measured over a spatial region is well established as a scientific tool which makes considerable contributions to a wide variety of application areas. Further development of these tools also remains a central part of the research scene in statistics. However, understanding of the concepts involved often benefits from an intuitive and experimental approach, as well as a formal description of models and methods. This paper describes software which is intended to assist in this understanding. The role of simulation is advocated, in order to explain the meaning of spatial correlation and to interpret the parameters involved in standard models. Realistic scenarios where decisions on the locations of sampling points in a spatial setting are required are also described. Students are provided with a variety of sampling strategies and invited to select the most appropriate one in two different settings. One involves water sampling in the lagoon of the Mururoa Atoll while the other involves sea bed sampling in a Scottish firth. Once a student has decided on a sampling strategy, simulated data are provided for further analysis. This extends the range of teaching activity from the analysis of data collected by others to involvement in data collection and the need to grapple with issues of design. It is argued that this approach has significant benefits in learning.

    rpanel: Simple Interactive Controls for R Functions Using the tcltk Package

    Get PDF
    In a variety of settings it is extremely helpful to be able to apply R functions through buttons, sliders and other types of graphical control. This is particularly true in plotting activities where immediate communication between such controls and a graphical display allows the user to interact with a plot in a very effective manner. The tcltk package provides extensive tools for this and the aim of the rpanel package is to provide simple and well documented functions which make these facilities as accessible as possible. In addition, the operations which form the basis of communication within tcltk are managed in a way which allows users to write functions with a more standard form of parameter passing. This paper describes the basic design of the software and illustrates it on a variety of examples of interactive control of graphics. The tkrplot system is used to allow plots to be integrated with controls into a single panel. An example of the use of a graphical image, and the ability to interact with this, is also discussed.

    rpanel: Simple interactive controls for R functions using the tcltk package

    Get PDF
    In a variety of settings it is extremely helpful to be able to apply R functions through buttons, sliders and other types of graphical control. This is particularly true in plotting activities where immediate communication between such controls and a graphical display allows the user to interact with a plot in a very effective manner. The tcltk package provides extensive tools for this and the aim of the rpanel package is to provide simple and well documented functions which make these facilities as accessible as possible. In addition, the operations which form the basis of communication within tcltk are managed in a way which allows users to write functions with a more standard form of parameter passing. This paper describes the basic design of the software and illustrates it on a variety of examples of interactive control of graphics. The tkrplot system is used to allow plots to be integrated with controls into a single panel. An example of the use of a graphical image, and the ability to interact with this, is also discussed

    Interactive Teaching Tools for Spatial Sampling

    Get PDF
    The statistical analysis of data which is measured over a spatial region is well established as a scientific tool which makes considerable contributions to a wide variety of application areas. Further development of these tools also remains a central part of the research scene in statistics. However, understanding of the concepts involved often benefits from an intuitive and experimental approach, as well as a formal description of models and methods. This paper describes software which is intended to assist in this understanding. The role of simulation is advocated, in order to explain the meaning of spatial correlation and to interpret the parameters involved in standard models. Realistic scenarios where decisions on the locations of sampling points in a spatial setting are required are also described. Students are provided with a variety of sampling strategies and invited to select the most appropriate one in two different settings. One involves water sampling in the lagoon of the Mururoa Atoll while the other involves sea bed sampling in a Scottish firth. Once a student has decided on a sampling strategy, simulated data are provided for further analysis. This extends the range of teaching activity from the analysis of data collected by others to involvement in data collection and the need to grapple with issues of design. It is argued that this approach has significant benefits in learning

    LIS–lnterlink—connecting laboratory information systems to remote primary health–care centres via the Internet

    Get PDF
    A pilot study was performed to evaluate the feasibility of using the Internet to securely deliver patient laboratory results, and the system has subsequently gone into routine use in Poland. The system went from design to pilot and then to live implementation within a four-month period, resulting in the LIS-Interlink software product. Test results are retrieved at regular intervals from the BioLinkTM LIS (Laboratory Information System), encrypted and transferred to a secure area on the Web server. The primary health-care centres dial into the Internet using a local-cell service provided by Polish Telecom (TP), obtain a TCP/IP address using the TP DHCP server, and perform HTTP ‘get’ and ‘post’ operations to obtain the files by secure handshaking. The data are then automatically inserted into a local SQL database (with optional printing of incoming reports)for cumulative reporting and searching functions. The local database is fully multi-user and can be accessed from different clinics within the centres by a variety of networking protocols

    Biodiversity characterisation and hydrodynamic consequences of marine fouling communities on submerged marine structures in the Orkney Islands Archipelago, Scotland, UK.

    Get PDF
    As part of ongoing commitments to produce electricity from renewable energy sources in Scotland, Orkney waters have been targeted for potential large-scale deployment of wave and tidal energy converting devices. Orkney has a well-developed infrastructure supporting the marine energy industry; recently enhanced by the construction of additional piers. A major concern to marine industries is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, the marine energy infrastructure and instrumentation were surveyed to characterise the biofouling. Fouling communities varied between deployment habitats; key species were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive organisms. A method to measure the impact of biofouling on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Orkney. The results are discussed in relation to the accuracy of the measurement resources for power generation. Further applications are suggested for future testing in other scenarios, including tidal energy

    Biodiversity characterisation and hydrodynamic consequences of marine fouling communities on submerged marine structures in the Orkney Islands Archipelago, Scotland, UK.

    Get PDF
    <p>As part of ongoing commitments to produce electricity from renewable energy sources in Scotland, Orkney waters have been targeted for potential large-scale deployment of wave and tidal energy converting devices. Orkney has a well-developed infrastructure supporting the marine energy industry; recently enhanced by the construction of additional piers. A major concern to marine industries is biofouling on submerged structures, including energy converters and measurement instrumentation. In this study, the marine energy infrastructure and instrumentation were surveyed to characterise the biofouling. Fouling communities varied between deployment habitats; key species were identified allowing recommendations for scheduling device maintenance and preventing spread of invasive organisms. A method to measure the impact of biofouling on hydrodynamic response is described and applied to data from a wave-monitoring buoy deployed at a test site in Orkney. The results are discussed in relation to the accuracy of the measurement resources for power generation. Further applications are suggested for future testing in other scenarios, including tidal energy.</p

    A Giant Metrewave Radio Telescope/Chandra view of IRAS 09104+4109: A type 2 QSO in a cooling flow

    Full text link
    IRAS 09104+4109 is a rare example of a dust enshrouded type 2 QSO in the centre of a cool-core galaxy cluster. Previous observations of this z=0.44 system showed that as well as powering the hyper-luminous infrared emission of the cluster-central galaxy, the QSO is associated with a double-lobed radio source. However, the steep radio spectral index and misalignment between the jets and ionised optical emission suggested that the orientation of the QSO had recently changed. We use a combination of new, multi-band Giant Metrewave Radio Telescope observations and archival radio data to confirm that the jets are no longer powered by the QSO, and estimate their age to be 120-160 Myr. This is in agreement with the ~70-200 Myr age previously estimated for star-formation in the galaxy. Previously unpublished Very Long Baseline Array data reveal a 200 pc scale double radio source in the galaxy core which is more closely aligned with the current QSO axis and may represent a more recent period of jet activity. These results suggest that the realignment of the QSO, the cessation of jet activity, and the onset of rapid star-formation may have been caused by a gas-rich galaxy merger. A Chandra X-ray observation confirms the presence of cavities associated with the radio jets, and we estimate the energy required to inflate them to be ~7.7x10^60 erg. The mechanical power of the jets is sufficient to balance radiative cooling in the cluster, provided they are efficiently coupled to the intra-cluster medium (ICM). We find no evidence of direct radiative heating and conclude that the QSO either lacks the radiative luminosity to heat the ICM, or that it requires longer than 100-200 Myr to significantly impact its environment. [Abridged]Comment: 23 pages, 18 figures and 7 tables. Accepted for publication in MNRA

    Reconciling Assumptions in Bottom-Up and Top-Down Approaches for Estimating Aerosol Emission Rates From Wildland Fires Using Observations From FIREX-AQ

    Get PDF
    Accurate fire emissions inventories are crucial to predict the impacts of wildland fires on air quality and atmospheric composition. Two traditional approaches are widely used to calculate fire emissions: a satellite-based top-down approach and a fuels-based bottom-up approach. However, these methods often considerably disagree on the amount of particulate mass emitted from fires. Previously available observational datasets tended to be sparse, and lacked the statistics needed to resolve these methodological discrepancies. Here, we leverage the extensive and comprehensive airborne in situ and remote sensing measurements of smoke plumes from the recent Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign to statistically assess the skill of the two traditional approaches. We use detailed campaign observations to calculate and compare emission rates at an exceptionally high-resolution using three separate approaches: top-down, bottom-up, and a novel approach based entirely on integrated airborne in situ measurements. We then compute the daily average of these high-resolution estimates and compare with estimates from lower resolution, global top-down and bottom-up inventories. We uncover strong, linear relationships between all of the high-resolution emission rate estimates in aggregate, however no single approach is capable of capturing the emission characteristics of every fire. Global inventory emission rate estimates exhibited weaker correlations with the high-resolution approaches and displayed evidence of systematic bias. The disparity between the low-resolution global inventories and the high-resolution approaches is likely caused by high levels of uncertainty in essential variables used in bottom-up inventories and imperfect assumptions in top-down inventories

    The retrospective analysis of Antarctic tracking data project

    Get PDF
    The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations
    corecore